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We solve the two-dimensional time-dependent heat-conduction problem for a 
system of three cylindrical regions heated by a time-dependent heat flux 
through an annular region on the surface. 

In the last few i years a great deal of attention, both in the domestic and the foreign 
literature [1-9], has been paid to the study of the heat exchange in a semiinfinite (in 
the thermal sense) body with local heat sources of various geometrical shapes on the surface. 
The solution of heat-conduction problems of this type has been treated in great detail in the 
early fundamental treatise [i0]. Increased interest in such time-dependent heat-conduction 
problems for semiinfinite bodies has taken place because the solutions of these problems 
can be used in theoretical and practical applications. 

The first area of application is to mathematical physics and the theory of special func- 
tions such as degenerate hypergeometric functions, Whittaker and Kummer functions, parabolic 
cylinder functions, etc. [11-14] which are generated by second-order ordinary differential 
equations into which the heat equation separates in the case of a half-space with disconti- 
nuous boundary conditions of the second kind. 

Secondly, the time-dependent local sources and sinks of thermal energy acting on the 
surface of a semiinfinite body are typical of many thermal processes in electronic devices, 
since each diode or transistor mounted into the body is a time-dependent local source of 
heat on the surface of the body. Therefore, an accurate calculation of the optimal ther- 
mal regime of an electronic device leads to a thermal problem of the type discussed above 
[15]. 

Thirdly, the time-dependent development of spatial temperature fields due to a supply 
of heat to a portion of the surface of the body through a local region (in the shape of a 
circle, ring, strip, etc.) serves as the mathematical foundation of working methods and 
devices for the nondestructive control of thermophysical characteristics of materials (i.e, 
without destroying the material) [1-9]. 

In the present paper we consider the problem for the two-dimensional time-dependent 
temperature field @i (r, z, T) (i = i, 2, 3) in cylindrical coordinates on the surface z = 0 
of a semiinfinite body when there is an arbitrary heat flux density q(T) acting in an annular 
region R 2 ~ r ~ R I on the surface of the body (see Fig. i). In the regions r < R I and ~ > 
r > R 2 we assume that the surface z = 0 is thermally insulated. The initial temperature dis- 
tribution inside the body is assumed to be constant, T o = const. The origin of the coordi- 
nate system r = z = 0 is chosen at the center of the annular region bounded by r = R I and 
r = R 2 (R 2 > R l) on the surface z = 0. The thermophysical characteristics of the semiin- 
finite body are assumed to be constant and independent of temperature. 

The mathematical formulation of the thermophysical problem reduces to a system of 
three heat equations of the form 

1 0 F ctO~(~, z, ~) 
- [ f 

r ar ar 

The ranges of the variables r, 

.] + a~O~(r,az ~ z, T) ~ al ao~ (r,aTz, T) (f = 1, 2, 3). ( 1 )  

z, T are: 

ex(r, z, , ) =  Tl(r, z, "O--To ( O ~ r <  R1, z~O,  T>0);  

e2(r, z, T)= T2(r, z, "c)--To (RI<r<~R2, z~0,  ~'>0); 
O~(r, z, T)~ T~(r, z, *)--To (R~.<r~.~ oo, z~-'~O, T>O). 
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Ideal heat insulation 

ir, 6 I '~z[  / 
I 1 Fig. i. Model of a thermally semi- 

infinite body heated through an 
annular region on the surface by a 
heat flux density q(x). 

The initial condition for system (i) is 

O~(r, z, 0 ) =  0, 

and the boundary conditions are 

(~.) 

(3 )  

_ ~, ao2 (r, 0, ~) _ q (,) (R~ < r < R2); 
az (4) 

aO,(r, O, ~) _ aO~(r, O, ~).=: 0 ( 0 ~ < ; < R , , ~ .  
az Oz > R2 / (5) 

OO~ (0, z, "0 = 0; 
Or 

(6)  aO~(r, oo, ~) = 0; 
az 

aos(oo, z, T) = 0; ( 7 )  
Or 

O~ (R~, z, ~) = 0.2 (R~, z, ~); (8)  

O0~ (R~, z, T) OO~(R~, z, T) ~- 
Or Or 

(9) 
O~(R~, z, ~ ) =  O3(R~, z, ~); 

OO~(R~, z, ~) OOs(R~, z, ~) 
- -  (10) 

Or Or 

(11) 

The solution of (i) with the boundary conditions (2)-(11) can be obtained with the help 
o f  F o u r i e r  a n d  L a p l a c e  t r a n s f o r m  m e t h o d s  and  c a n  be  w r i t t e n  i n  t h e  f o l l o w i n g  f o r m  f o r  z = O: 

1 

• exp ( - -  R~/8a~)  W 2,,--m 1 ,~ 1 t - -  exp ( - -  R2/8a~)2 
2 + q - ,  y - q -  \ 4a~ / 

x W2n-m2 +T" T - q -  "~ ' \ ( 4a~R~ /~]d~ (0~r<R~); 

(12)  
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0o. (r, 0.. ~) _ b~/E1 i q (~]/-~- ~) d~. __ ~ l  .=o ,.=o"a'%' A. ,m x 

1 i _~q m _ ~ ~ 8 ~ ( #,- ~ 2n ( R2 2rt-,,n- V q (T - -  ~) ~ 2 4 exp (--  R=I aD •  

• \---~-7i t V ~  

p. + - Y '  5 - - - 7 -  4a8 / /' X ( 1 3 )  
n = O  m = O  �9 

1 ~. - - n @  m 3 (_%( ;--' X l / a - )  t I / a ]  .f q ('~ - -  ~) ~ exp ( - -  r"-t8a~) X 
�9 0 

x 

/ 
r ~ 

\ 
X W , , , - m  s ,~ , | !d~ ( R ~ < r < R . ) ;  

= +-7-' ~ - + ~  \ 4a~ ) 

o, . )=  V ' {w) " ~, 2 (n -4- 1) 

tn 3 

' [ ( R, ~"§ { r ) - , , - . .5-  1 - -  4exp(_r ,18a~)x  ( 14 )  
\-VT-a ) L t R~ ) j ~ 

x W2~-,~ a m ._• d~ ( R 2 < r <  oo). 
2 F- : t - '~  ' 4 ~ . 

Here b = X/Ca (W.seclS2/m2.deg) is the thermal activity of the semiinfinite body, 

C,~ ( @ )  2 m ( 2 m - -  1)!! 

A .. . .  = 4n (n!) 2 = 4 n n ! m ! ( n _ m ) ! ,  ( 1 5 )  

w h e r e  1 . 3 . 5 . 7  . . ~  (2m - 1) = v - ! s a 2 m  - 1 / 2 ) / 2  TM i s  t h e  Pokhammer  s y m b o l ,  (2m - 1 ) ! !  = 1 . 3 . 5 .  
7 . . .  ( 2 m -  1) = ~ -z~22m r ( m  + 1 / 2 )  i s  t h e  odd f a c t o r i a l ,  and  t h e  C~ a r e  t h e  b i n o m i a l  c o -  
e f f i c i e n t s .  

The Whittaker functions Wk,~(X) = Wk,_~(X) are members of 
geometric functions [11-14] and (using various notations) can 
Kummer functions U(a, c, X) ~ ~ (a, c; X) or M(a, c, X) = ~(a, 
(_ X/2)X~/Z+~U(I/2 + ~ i k, 1 + 2u, X) or Wk,u(X) = exp(-X/2) 
1 + 2~, x)Ir(i/2 - ~ - k) + X-2U XF(2~)M(I/2 - ~ - k, i - 2~, 
alized hypergeometric series of Gauss 2F0(~, 6; - l/X), i.e., 

- k + ~, i/2 - k -U, - I/X); the E-function of MacRobert E(~, 
(-X/2) XkE(I/2 + u - k, 1/2 - u - k::X)/F(I/2 + u - k)F(i/2 - 
(see Table i). 

If the inner radius R i of the annular heater goes to zero (R i + 0) we obtain from (13) 
and (14) (the solution (12) for @i(r, 0, T) vanishes, since in the limit R i + 0 the region 
0 J r J R i reduces to a single point) the time-dependent temperature distribution on the 
surface of the body as a function of the radius r and time �9 > 0 when there is a thin cir- 
cular heat source of radius R 2 on the surface: 

..~ olim @' (r ' O' m ) = @ ; (r ' O' m ) -- I i q <-~$ ~) d~ - -  } / ' - f  ] / -a  . b • 

x A.,m r 2 h i  R2 ~2 . . . . . .  T q ( ~ _  2 4 
,,=o ,.=0 t y~- ) 

(o ~ r < R2); 

lira @a(r, O, ~ ) - - O : ( r ,  O, " 0 =  1 / - f  
R~-+0 

_~_~ ( R.'~"-m-z- • Y g 
t , ' - -~~ ,] �9 q (m--  ~) ~-"+ 

0 

the class of degenerate hyper- 
be expressed in terms of the 

c; X), i.e., W k ,(X) = exp 
• x ~ ' = + u  { r ( - 2 u ~ ( 1 / 2  + u- -  k, 
X)/F(I/2 + U - k)}; the gener- 
Wk,u(X) = exp (-X/2)XkzF0(i/2 
g::X), i.e., Wk,~(X) = exp 
U - k) and other functions 

exp<--  ' R 2 / 8 a ~ )  g 2~-,~ 1 . ,  1 2 d~ 
2 +'7-' 5 - - - 7 -  

(16) 

X 
;~ 2 ( n +  1) r t~O trt=O 

4 exp ( - -  r~/8a~) W 2~-,~ a ~ 1 (r2/4a~) d~ 
+ -4-, "T +'7-  

(17) (R~<r ~< oo). 
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TABLE I. Special Cases and Relations for the Whittaker Func- 
tions Wk,u(X) 

N O  �9 

�9 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

t6 

17 

v 1 
_ _ _  r _ _  

2 ~- 4 

c~+1 --T-+n 
[ a - -  1 

2 
1 

2 
' V  

2 

n 1 

T+-T 
1 

4 
3 

4 

1 

4 

3 

4 

e 

-+-ix 

Wh, ~ (x) 

I 

] 

Z 

1 

l 

Relation 

x 1 
e 2X 2 +,t~ X 

X U/\+--}- t . t - -k ,  l-}-21-t, X) 

r ( -  2,u) 
r ( + - ~ -  ~) ~ k ' "  (x) + 

r (2~) 
+ k) Mh'--~ (X) 

x 
2 Xk2FO ( I _  

,, 2 - - / z+ [~ ,  

2 

Xk 
X 

l 
• ( _ T _ ~ _ ~ , '  -F--k+~::x) 

r-- i X \  
1 /  X K t ~  

v 1 
2 ~x4 O~(y~-) 

V - A -  n+ T 

+] 

Function 

Kun~er 

Whittaker 

Degenerate hyper- 
geometric function 

MaeRobert E 
function 

Modified Bessel 
function 

i 

Parabolic cylinder 
or Weber-Hermite 
function 

Spherical Bessel 

Airy  

C 

~ e 

1 
~- r 

1 

1 

-T 
l 

-T 
J_ 

4 
1 

-T 

x (g+l) 
2 x ~ (- I),, n!L~ ~) (x) 

X (f--a) 
e 2 X  2 Y(a, X) 

x 1 
e 2 X 2 E1 (X) 

1 v 

x 1 

e - X  

1 x 

V ~ - X  4 e 2 erfc (I/X--) 

l X 

2 V~-  X 4 e ~ ierfc (VX-)  
1 x 

X 4  e 2 
3 x 

X 4 e  2 

Laguerre 

Incomplete gamma 
function 

Exponential 
integral 

Bateman 

Hermite 

Probability in- 
tegral 

Multiple probabil- 
ity integral 
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If the outer radius of the annular heater goes to infinity (R 2 + ~) then we obtain from 
(12) and (13) (the solution (14) for @a(r, 0, ~) vanishes since when R 2 + ~ the region R 2 < 
r < ~ is infinitely far from the surface) the time-dependent temperature distribution on 
the surface of a semiinfinite body as a function of the radius r and time �9 > 0 when there 
is a time-dependent heat source of strength q(~) acting in the region R~ < r J ~ on the sur- 
face of the body, and in the region 0 J r < R~ (z = 0) the heat flux vanishes along the nor- 
mal to the boundary of the body, i.e., in this region the body is thermally insulated: 

** V f -~  1 2 2 . ( r '~ 2~ limOl(r, O, ~ )=@l  (r, O, ~ ) =  A.m X 
-e,~= b \--~-1 / 

,"Z ~ 0 m ~ O  

1 v m 

X k [ -I/a,)R1 ~ . - m -  T o ~ q(,~_~)~-nH 2 4 exp(-- Rg/8ag) x (18) 

2 ~ 4'  2 T \ 4a~ / 

• 

X.  R, ~, ,~ A .... ( r ~ - , * - T  -g- [ q ( , _ ~ ) ~ - n +  ~ 4 exp(--r ' /8aE) x 
n~O rn~O 

( 1 9 )  

x W 2 ~ - ~  a ,~ * ( R x < r ~ o o ) .  
2 § Y+~- 

The solutions (12)-(19) have the correct limiting behavior. For example, if we put 
R l = 0 in (19) we obtain the one-dimensional result of [16]. From (16) evaluated at r = 0, 
we obtain the particular solution of [5], relating the excess temperature 02*(0, 0, T) at 
the center (r = z = 0) to the heat flux density acting through lhe surface z = 0 and in- 
side the circular region r = R 2, since the Whittaker function for the first term of the 
double sum (n = m = 0) will be equal to 

! i 

W 1 I - ~ exp (-- Rg/8a~). 
4 ,  4 ]/2 

We now c o n s i d e r  t h e  a p p l i c a t i o n  o f  t he  t i m e - d e p e n d e n t  t e m p e r a t u r e  f i e l d s  ( 1 2 ) - ( 1 9 )  f o r  
s p e c i f i c  forms of  q(~ - ~).  We n o t e  t h a t  t h e s e  t e m p e r a t u r e  f i e l d s  a r e  c o m p l i c a t e d  f u n c t i o n s  
of several variables but the prime issue is the explicit dependence of the excess temper- 
atures @i(r, 0, ~) (on the surface of the body) on all of the thermophysical characteris- 
tics of the semiinfinite body. This can be used to implement numerous "pure" nonstationary 
methods of nondestructive control of the thermophysical characteristics of materials, i.e., 
the entire set of thermophysical characteristics can be determined without inserting tem- 
perature sensors into the body. 

Which of the solutions given here is best to use in studying the thermophysical char- 
acteristics of materials depends on the inventiveness of the researcher and his ability to 
realize in practice the boundary conditions postulated theoretically and methods to supply 
controllable heat fluxes and to measure thecorresponding temperatures. 

NOTATION 

@i(r, 0, ~), excess temperature on the surface of the semiinfinite body in the three 
regions of r discussed in the text; R 2, R l, r, the outer and inner radii of the annular 
heater and the radius vector magnitude; q(~), arbitrary time-dependent heat flux density in 
a given local region of heating of a source; a, %, b, thermal diffusivity, thermal conduc- 
tivity, and thermal activity of the semiinfinite body; z, ~, cylindrical coordinate and 
time; An,m, constant thermal amplitudes (see text); Wk,B(X), Whittaker function; U(a, c, X)= 
~(a, c; X), M(a, c, X) = @(a, c; X), Kummer functions; 2F0(a, ~; --l/X), generalizedhyper- 

geometric function; E(~, B::X), E-function of MacRobert; F(a), the gamma function; 
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0i*(r, 0, ~),Oi**(r, 0, T), To, excess temperatures on the surface of the semiinfinite 
body in the limiting cases for R I and R 2 (see text) and the initial temperature, respec- 
tively. 

LITERATURE CITED 

i. L. E. Melamed, "Heating of a body by a circular heat source with heat transfer from the 
surface," Inzh.-Fiz. Zh., 40, No. 3, 524-526 (1981). 

2. G. M. Serykh, B. P. Kolesnikov, and V. G. Sysoev, "Determination of the thermophysical 
characteristics of materials," Prom. Teplo., ~, No. I, 85-91 (1981). 

3. A. I. Fesenko, "Digital device for determining the thermophysical properties of mate- 
rials," Mashinostroenie, Moscow (1981). 

4. V. P. Kozlov and A. V. Stankevich, "Methods of nondestructive control in the study of 
the thermophysical characteristics of solids," Inzh.-Fiz. Zh., 47, No. 2, 250-255 (1984). 

5. V. P. Kozlov, "Generalized quadrature for determining the two-dimensional temperature 
field in a semiinfinite body for discontinuous boundary conditions of the second kind," 
Inzh.-Fiz. Zh., 4-7, No. 3, 463-469 (1984). 

6. V. N. Lipovtsev and V. P. Kozlov, "Pulse method of nondestructive control in the study 
of the thermophysical characteristics of solids," Vestsi Akad. Nauk BSSR, Ser. Fiz.-Energ. 
Navuk, No. 4, 36-40 (1984). 

7. S. Z. Sapozhinkov and G. M. Serykh, "Methods of determining the thermophysical proper- 
ties of materials," Inventor's Certificate No. 458735, Byull. izobret., No. 4 (1975). 

8. B. I. Kolesnikov, G. M. Serykh, and V. G. Sysoev, "Methods of determining the thermo- 
physical characteristics of materials," Inventor's Certificate No. 949448, Byull. Izo- 
bret. No. 29 (1982). 

9. J. V. Beck, "Large time solutions for temperatures in a semiinfinite body with a disk 
heat source," Int. J. Heat Mass Transfer, 24, 155-164 (1981). 

i0. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Clarendon Press, 
Oxford (1959). 

ii. M. Abramowitz and I. A. Stegun (eds.), Handbook of Special Functions, Dover (1964). 
12. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic 

Press (1960). 
13. A. Erd~lyi (ed.), Tables of Integral Transforms (Calif. Inst. of Technology), H. 

Bateman MS Project, McGraw-Hill, New York (1954). 
14. A. A. Erdelyi (ed.), Higher Transcendental Functions (Calif. Inst. of Technology), H. 

Bateman MS Project, McGraw-Hill, New York (1953,1955). 
15. G. N. Dul'nev, Heat and Mass Exchange in Electronic Apparatus [in Russian], Vysshaya 

Shkola, Moscow (1984). 
16. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967). 

CALCULATION OF AN OPTICAL SYSTEM WITH A HOLLOW MIRROR 

LIGHTGUIDEANDDIAPHRAGMS FOR PHOTOELECTRIC DEVICES 

V. B. Rantsevich UDC 535.31:536.52 

A calculation method and nomograms are presented for optical systems with a 
hollow mirror cylindrical lightguide, input and output diaphragms, and a 
radiation receiver. 

Hollow mirror lightguides [i, 2] are now being used in photoelectric equipment, espe- 
cially pyrometers, together with lenses, mirrors, lightguides made of opticaly transparent 
materials, and other elements. The hollow mirror guides are nonselective, simple in cons- 
truction, convenient in use, have high mechanical strength, and are low in cost. However, 
no methods are available for calculation of an optical system with hollow lightguides in- 
teracting with other elements - diaphragms, radiation receivers, lenses, etc. 
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